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COMMENT 

Simulation of the Compton effect by reflection from a moving 
mirror 

K McFarlane and N C McGill 
Department of Theoretical Physics, University of St Andrews, St Andrews, Fife, Scotland 

Received 31 October 1978 

Abstract. An examination is made of Ashworth’s analogy between the Compton effect and 
the reflection of a photon from a moving mirror. It is shown that one of his allowed mirror 
orientations does not succeed in simulating the Compton effect and that the correct result 
may be obtained by a much simpler argument. 

Recently Ashworth (1978) has pointed out that the energy and direction of motion of 
the scattered photon in a Compton scattering process are the same as would be 
produced by allowing a photon with the same initial energy and direction of motion to 
be reflected from a moving mirror. Ashworth’s analysis yields a single value for the 
velocity of the mirror, but two distinct solutions for the angle a which specifies its 
orientation. The purpose of this note is to show that one of these solutions is spurious, 
being due to an ambiguity in the sign of the angle used in Ashworth’s method to define 
the direction of the reflected photon. Furthermore we show how the correct result may 
be obtained by a much simpler procedure and that it applies to a particle-particle 
collision as well as to a particle-photon collision. 

We first set out our own analysis for a particle-particle collision. Consider a particle 
of rest mass MO which is initially at rest in an inertial frame S and which moves after the 
collision with uniform velocity V in the positive x direction. The second particle 
initially has energy E l  and moves with momentumpl in a straight line making an angle q9 
with the positive x axis. After collision it has energy E:! and moves with momentum p 2  
in a straight line making an angle $+#J with the positive x axis. The geometry is as 
indicated in figure 1 of Ashworth’s paper. Conservation of energy and momentum 
requires 

(1) E1 +Moc2 = E2 + y (  V)M,C , 

P 1 ~ ~ ~ I I , = Y ~ ~ ~ ~ o ~ + P 2 ~ ~ ~ ~ q 9 + d ~ ,  (2) 

PI sin $ = PZ sin(+ + #JL (3) 

2 

where y (  V) = (1 - V 2 / c 2 ) - ” 2 .  
We now enquire whether there is a frame S’, moving with respect to S with velocity U 

in the x direction, in which the initial and final energies of the second particle are the 
same, since this is one of the conditions necessary for the behaviour of this particle to be 
represented as ‘specular reflection’. Taking S and S’ to be in standard configuration, we 
apply the energy transformation equation 

E‘= r ( v ) ( E  - u p x )  (4) 
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to the second particle before and after the collision, and find on equating E ;  and E;  that 

E ~ - u P : ! c o s ( J , + ~ ) = E ~ - u P ~  COS 4. ( 5 )  

Combiningequations ( l ) ,  (2) and ( 5 )  we quickly discover (in agreement with Ashworth) 
that 

v = (c’ /V)[ l - ( l -  v2/c2)1’2]. (6) 

As noted by Ashworth, in the frame S’ the first particle moves with speed U in the 
negative x’  direction before the collision, and with speed U in the positive x’  direction 
afterwards. In this frame it follows from conservation of momentum together with 
E; = Eh that the x ’  component of momentum for the second particle is also reversed by 
the collision, the y’  component of momentum being unaffected by the collision. The 
motion of this particle can therefore be represented as specular reflection from a 
‘particle mirror’ which is at rest in S’ and whose normal is parallel to the x’ axis. This 
orientation is the a = 0 solution obtained by Ashworth. Clearly the analysis for a 
particle-photon collision is almost identical, only the minor substitutions E l  = hvl ,  
p1 = hvl /c ,  etc being required to re-express the argument in terms of photon frequen- 
cies. The conclusion is the same, except of course that the ‘particle mirror’ may now be 
regarded as an ordinary (optical) mirror. 

We now comment on the second solution for a found by Ashworth. His procedure 
involved the use of previously derived formulae (Ashworth and Davies 1976) for the 
frequency v z  and direction qhz of a light ray reflected by a mirror which moves in S with 
constant velocity U in the x direction and whose normal makes an angle a with the x 
axis, the initial frequency and direction of the light ray being v1 and dl  respectively (q51 
and q5z are defined with respect to the positive x axis.) Ashworth equated v2/v1 to the 
corresponding expression obtained from Compton effect analysis, and equated cos 42 
to the expression for cos(J,+q5) in the Compton effect, then solved the resulting 
simultaneous equations for v and a. However, a spurious second solution for cy arises in 
this method from the fact that C O S ~ ~ = C O S ( ~ , + C $ )  has two solutions for q52, i.e. 
42 = J, + q5 (the solution required) and q5z = -(3, + 4) (an irrelevant solution). In other 
words, the procedure adopted unfortunately solves not only the problem of finding a 
mirror which gives the same reflection parameters v2, 3, + 4 as occur in the Compton 
effect, but also the problem of finding a mirror which gives the reflection parameters v2, 
-(J,+4), a problem of comparatively little interest. This is largely confirmed by 
Ashworth’s figure 3, which attempts to portray the geometrical arrangement for the 
second solution for a ; if the mirror is replaced by the original electron moving parallel 
to the x’  axis throughout, then it is obvious (especially in S ‘ )  that momentum is not 
conserved. 

Finally we would like to comment briefly on the significance which Ashworth 
attaches to this electron-mirror analogy. It is admittedly true that ‘the scattering 
electron in the Compton effect is therefore acting like a perfectly reflecting mirror . . .’, 
but we believe that there is a danger in pressing the analogy too far, e.g. in speculating 
on ‘. . . the possibility that the Compton effect might be an example of light being 
reflected from a perfectly reflecting moving mirror. . .’. As we have noted, specular 
reflection occurs in the frame S’ not only for a particle-photon collision but also for a 
particle-particle collision, and this feature of relativistic particle dynamics is therefore 
not something peculiar to the Compton effect or, in our view, likely to reveal anything 
about its nature. The essential non-classical feature in the conventional explanation of 
the Compton effect lies in the corpuscular nature of the radiation expressed by the 
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equations E = hu, p = hv/c ,  and nothing in Ashworth’s analysis appears to suggest that 
the Compton effect might be explicable in classical terms not involving the photon 
hypothesis. 
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